U.S. and Soviet leaders … signed agreements on space, science and technology, health and the environment…. The space agreement … outlines plans for cooperation in fields such as meteorology, study of the natural environment, planetary exploration and space biology.
Update The 1972 space agreement led to the first international human spaceflight, the Apollo-Soyuz mission, during which Soviet and U.S. crews socialized in space (SN: 7/26/75, p. 52). Apollo-Soyuz encouraged decades of collaboration that continues today on the International Space Station. Now, Russia’s war in Ukraine has prompted many countries to pull back on scientific endeavors with Russia, in space and on Earth (SN: 3/26/22, p. 6). While NASA remains committed to the space station, the head of Russia’s space agency has threatened to end the cooperation in retaliation for sanctions imposed in response to the war. Russia has yet to make moves to abandon the station, though the country has ceased supplying rocket engines to the United States.
The sperm whale is an endangered species. A major reason is that the whale oil is heat-resistant and chemically and physically stable. This makes it useful for lubricating delicate machinery. The only substitute is expensive carnauba wax from the leaves of palm trees that grow only in Brazil … [but] wax from the seeds of the jojoba, an evergreen desert shrub, is nearly as good.
Update After sperm whale oil was banned in the early 1970s, the United States sought to replenish its reserves with eco-friendly oil from jojoba seeds (SN: 5/17/75, p. 335). Jojoba oil’s chemical structure is nearly identical to that of sperm whale oil, and the shrub is native to some North American desert ecosystems, making the plant an appealing replacement. Today, jojoba shrubs are cultivated around the world on almost every continent. Jojoba oil is used in hundreds of products, including cosmetics, pharmaceuticals, adhesives and lubricants. Meanwhile, sperm whale populations have started to recover under international anti-whaling agreements (SN: 2/27/21, p. 4).
Some thumbnail-sized, brown male spiders in Georgia could be miffed if they paid the least attention to humans and our news obsessions.
Recent stories have made much of “giant” jorō spiders invading North America from eastern Asia, some large enough to span your palm. Lemon yellow bands cross their backs. Bright red bits can add drama, and a softer cheesecake yellow highlights the many joints on long black legs.
The showy giants, however, are just the females of Trichonephila clavata. Males hardly get mentioned except for what they’re not: colorful or big. A he-spider hulk at 8 millimeters barely reaches half the length of small females. Even the species nickname ignores the guys. The word jorō, borrowed from Japanese, translates to such unmasculine terms as “courtesan,” “lady-in-waiting” and even “entangling or binding bride.” Mismatched sexes are nothing new for spiders. The group shows the most extreme size differences between the sexes known among land animals, says evolutionary biologist Matjaž Kuntner of the Evolutionary Zoology Lab in Ljubljana, Slovenia. The most dramatic case Kuntner has heard of comes from Arachnura logio scorpion spiders in East Asia, with females 14.8 times the size of the males.
With such extreme size differences, mating conflicts in animals can get violent: females cannibalizing males and so on (SN: 11/13/99). As far as Kuntner knows, however, jorō spiders don’t engage in these “sexually conflicted” extremes. Males being merely half size or thereabouts might explain the relatively peaceful encounters.
When it comes to humans, these spiders don’t bother anybody who doesn’t bother them. But what a spectacle they make. “I’ve got dozens and dozens in my yard,” says ecologist Andy Davis at the University of Georgia in Athens. “One big web can be 3 or 4 feet in diameter.” Jorō spiders have lived in northeastern Georgia since at least 2014. These new neighbors inspired Davis and undergraduate Benjamin Frick to see if the newcomers withstand chills better than an earlier invader, Trichonephila clavipes, their more tropical relative also known as the golden silk orb-weaver. (The jorō also can spin yellow-tinged silk.) The earlier arrival’s flashy females and drab males haven’t left the comfy Southeast they invaded at least 160 years ago.
Figuring out the jorō’s hardiness involves taking the spider’s pulse. But how do you do that with an arthropod with a hard exoskeleton? A spider’s heart isn’t a mammallike lump circulating blood through a closed system. The jorō sluices its bloodlike fluid through a long tube open at both ends. “Think of a garden hose,” says Davis. He has measured heart rates of monarch caterpillars, and he found a spot on a spider’s back where a keen-eyed observer can count throbs.
Female jorō spiders packed in ice to simulate chill stress kept their heart rates some 77 percent higher than the stay-put T. clavipes, tests showed. Checking jorō oxygen use showed females have about twice the metabolic rate. And about two minutes of freezing temperatures showed better female survival (74 percent versus 50 percent). Lab tests used only the conveniently big jorō females, though male ability to function in random cold snaps could matter too.
Plus jorō sightings in the Southeast so far suggest the newer arrival needs less time than its relative to make the next generation, an advantage for farther to the north. The adults don’t need to survive deep winter in any case. Mom and dad die off, in November in Georgia, and leave their hundreds of eggs packed in silk to weather the cold and storms.
Reports on the citizen-observer iNaturalist site suggest that in Georgia, jorō spiders already cover some 40,000 square kilometers, Davis and Frick report February 17 in Physiological Entomology. Sightings now stretch into Tennessee and the Carolinas. But how far the big moms and tiny dads will go and when, we’ll just have to wait and see.
You can never have too much ice cream, but you can have too much ice in your ice cream. Adding plant-based nanocrystals to the frozen treat could help solve that problem, researchers reported March 20 at the American Chemical Society spring meeting in San Diego.
Ice cream contains tiny ice crystals that grow bigger when natural temperature fluctuations in the freezer cause them to melt and recrystallize. Stabilizers in ice cream — typically guar gum or locust bean gum — help inhibit crystal growth, but don’t completely stop it. And once ice crystals hit 50 micrometers in diameter, ice cream takes on an unpleasant, coarse, grainy texture.
Cellulose nanocrystals, or CNCs, which are derived from wood pulp, have properties similar to the gums, says Tao Wu, a food scientist at the University of Tennessee in Knoxville. They also share similarities with antifreeze proteins, produced by some animals to help them survive subzero temperatures. Antifreeze proteins work by binding to the surface of ice crystals, inhibiting growth more effectively than gums — but they are also extremely expensive. CNCs might work similarly to antifreeze proteins but at a fraction of the cost, Wu and his colleagues thought.
An experiment with a sucrose solution — a simplified ice cream proxy — and CNCs showed that after 24 hours, the ice crystals completely stopped growing. A week later, the ice crystals remained at 25 micrometers, well beneath the threshold of ice crystal crunchiness. In a similar experiment with guar gum, ice crystals grew to 50 micrometers in just three days. “That by itself suggests that nanocrystals are a lot more potent than the gums,” says Richard Hartel, a food engineer at the University of Wisconsin–Madison, who was not involved in the research. If CNCs do function the same way as antifreeze proteins, they’re a promising alternative to current stabilizers, he says. But that still needs to be proven.
Until that happens, you continue to have a good excuse to eat your ice cream quickly: You wouldn’t want large ice crystals to form, after all.