What do you get when you flip a fossilized “jellyfish” upside down? The answer, it turns out, might be an anemone.
Fossil blobs once thought to be ancient jellyfish were actually a type of burrowing sea anemone, scientists propose March 8 in Papers in Palaeontology.
From a certain angle, the fossils’ features include what appears to be a smooth bell shape, perhaps with tentacles hanging beneath — like a jellyfish. And for more than 50 years, that’s what many scientists thought the animals were. But for paleontologist Roy Plotnick, something about the fossils’ supposed identity seemed fishy. “It’s always kind of bothered me,” says Plotnick, of the University of Illinois Chicago. Previous scientists had interpreted one fossil feature as a curtain that hung around the jellies’ tentacles. But that didn’t make much sense, Plotnick says. “No jellyfish has that,” he says. “How would it swim?”
One day, looking over specimens at the Field Museum in Chicago, something in Plotnick’s mind clicked. What if the bell belonged on the bottom, not the top? He turned to a colleague and said, “I think this is an anemone.”
Rotated 180 degrees, Plotnick realized, the fossils’ shape — which looks kind of like an elongated pineapple with a stumpy crown — resembles some modern anemones. “It was one of those aha moments,” he says. The “jellyfish” bell might be the anemone’s lower body. And the purported tentacles? Perhaps the anemone’s upper section, a tough, textured barrel protruding from the seafloor.
Plotnick and his colleagues examined thousands of the fossilized animals, dubbed Essexella asherae, unearthing more clues. Bands running through the fossils match the shape of some modern anemones’ musculature. And some specimens’ pointy protrusions resemble an anemone’s contracted tentacles. “It’s totally possible that these are anemones,” says Estefanía Rodríguez, an anemone expert at the American Museum of Natural History in New York City who was not involved with the work. The shape of the fossils, the comparison with modern-day anemones — it all lines up, she says, though it’s not easy to know for sure.
Paleontologist Thomas Clements agrees. Specimens like Essexella “are some of the most notoriously difficult fossils to identify,” he says. “Jellyfish and anemones are like bags of water. There’s hardly any tissue to them,” meaning there’s little left to fossilize. Still, it’s plausible that the blobs are indeed fossilized anemones, says Clements, of Friedrich-Alexander-Universität Erlangen-Nürnberg in Germany. He was not part of the new study but has spent several field seasons at Mazon Creek, the Illinois site where Essexella lived some 310 million years ago. Back then, the area was near the shoreline, Clements says, with nearby rivers dumping sediment into the environment – just the kind of place ancient burrowing anemones may have once called home.
17th century scientist Christiaan Huygens set his sights on faraway Saturn, but he may have been nearsighted.
Huygens is known, in part, for discovering Saturn’s largest moon, Titan, and deducing the shape of the planet’s rings. But by some accounts, the Dutch scientist’s telescopes produced fuzzier views than others of the time despite having well-crafted lenses.
That may be because Huygens needed glasses, astronomer Alexander Pietrow proposes March 1 in Notes and Records: the Royal Society Journal of the History of Science. To make his telescopes, Huygens combined two lenses, an objective and an eyepiece, positioned at either end of the telescope. Huygens experimented with different lenses to find combinations that, to his eye, created a sharp image, eventually creating a table to keep track of which combinations to use to obtain a given magnification. But when compared with modern-day knowledge of optics, Huygens’ calculations were a bit off, says Pietrow, of the Leibniz Institute for Astrophysics Potsdam in Germany.
One possible explanation: Huygens selected lenses based on his flawed vision. Historical records indicate that Huygens’ father was nearsighted, so it wouldn’t be surprising if Christiaan Huygens also suffered from the often-hereditary affliction.
Assuming that’s the reason for the mismatch, Pietrow calculates that Huygens had 20/70 vision: What someone with normal vision could read from 70 feet away, Huygens could read only from 20 feet. If so, that could be why Huygens’ telescopes never quite reached their potential.
Weird materials called Weyl metals might reveal the secrets of how Earth gets its magnetic field.
The substances could generate a dynamo effect, the process by which a swirling, electrically conductive material creates a magnetic field, a team of scientists reports in the Oct. 26 Physical Review Letters.
Dynamos are common in the universe, producing the magnetic fields of the Earth, the sun and other stars and galaxies. But scientists still don’t fully understand the details of how dynamos create magnetic fields. And, unfortunately, making a dynamo in the lab is no easy task, requiring researchers to rapidly spin giant tanks of a liquefied metal, such as sodium (SN: 5/18/13, p. 26). First discovered in 2015, Weyl metals are topological materials, meaning that their behavior is governed by a branch of mathematics called topology, the study of shapes like doughnuts and knots (SN: 8/22/15, p. 11). Electrons in Weyl metals move around in bizarre ways, behaving as if they are massless.
Within these materials, the researchers discovered, electrons are subject to the same set of equations that describes the behavior of liquids known to form dynamos, such as molten iron in the Earth’s outer core. The team’s calculations suggest that, under the right conditions, it should be possible to make a dynamo from solid Weyl metals.
It might be easier to create such dynamos in the lab, as they don’t require large quantities of swirling liquid metals. Instead, the electrons in a small chunk of Weyl metal could flow like a fluid, taking the place of the liquid metal. The result is still theoretical. But if the idea works, scientists may be able to use Weyl metals to reproduce the conditions that exist within the Earth, and better understand how its magnetic field forms.
When the [Atomic Energy Commission] first cast its eye on the island of Amchitka as a possible site for the testing of underground nuclear explosions, howls of anguish went up; the island is part of the Aleutians National Wildlife Refuge, created to preserve the colonies of nesting birds and some 2,500 sea otters that live there…— Science News, November 9, 1968
Update The commission said underground nuclear testing would not harm the otters, but the fears of conservationists were well-founded: A test in 1971 killed more than 900 otters on the Aleutian island. Some otters remained around Amchitka, but 602 otters were relocated in 1965–1972 to Oregon, southeast Alaska, Washington and British Columbia — areas where hunting had wiped them out. All but the Oregon population thrived, and today more than 25,000 otters live near the coastal shores where once they were extinct.
“They were sitting on the precipice,” says James Bodkin, who is a coastal ecologist at the U.S. Geological Survey. “It’s been a great conservation story.”
Oceans may be shrinking — Science News, March 10, 1973
The oceans of the world may be gradually shrinking, leaking slowly away into the Earth’s mantle…. Although the oceans are constantly being slowly augmented by water carried up from Earth’s interior by volcanic activity … some process such as sea-floor spreading seems to be letting the water seep away more rapidly than it is replaced.
Update Scientists traced the ocean’s leak to subduction zones, areas where tectonic plates collide and the heavier of the two sinks into the mantle. It’s still unclear how much water has cycled between the deep ocean and mantle through the ages. A 2019 analysis suggests that sea levels have dropped by an average of up to 130 meters over the last 230 million years, in part due to Pangea’s breakup creating new subduction zones. Meanwhile, molten rock that bubbles up from the mantle as continents drift apart may “rain” water back into the ocean, scientists reported in 2022. But since Earth’s mantle can hold more water as it cools (SN: 6/13/14), the oceans’ mass might shrink by 20 percent every billion years.
THE WOODLANDS, TEXAS — Martian dirt may have all the necessary nutrients for growing rice, one of humankind’s most important foods, planetary scientist Abhilash Ramachandran reported March 13 at the Lunar and Planetary Science Conference. However, the plant may need a bit of help to survive amid perchlorate, a chemical that can be toxic to plants and has been detected on Mars’ surface (SN: 11/18/20).
“We want to send humans to Mars … but we cannot take everything there. It’s going to be expensive,” says Ramachandran, of the University of Arkansas in Fayetteville. Growing rice there would be ideal, because it’s easy to prepare, he says. “You just peel off the husk and start boiling.” Ramachandran and his colleagues grew rice plants in a Martian soil simulant made of Mojave Desert basalt. They also grew rice in pure potting mix as well as several mixtures of the potting mix and soil simulant. All pots were watered once or twice a day.
Rice plants did grow in the synthetic Mars dirt, the team found. However, the plants developed slighter shoots and wispier roots than the plants that sprouted from the potting mix and hybrid soils. Even replacing just 25 percent of the simulant with potting mix helped heaps, they found.
The researchers also tried growing rice in soil with added perchlorate. They sourced one wild rice variety and two cultivars with a genetic mutation — modified for resilience against environmental stressors like drought — and grew them in Mars-like dirt with and without perchlorate (SN: 9/24/21).
No rice plants grew amid a concentration of 3 grams of perchlorate per kilogram of soil. But when the concentration was just 1 gram per kilogram, one of the mutant lines grew both a shoot and a root, while the wild variety managed to grow a root.
The findings suggest that by tinkering with the successful mutant’s modified gene, SnRK1a, humans might eventually be able to develop a rice cultivar suitable for Mars.
A new species of hulking ancient herbivore would have overshadowed its relatives.
Fossils found in Poland belong to a new species that roamed during the Late Triassic, a period some 237 million to 201 million years ago, researchers report November 22 in Science. But unlike most of the enormous animals who lived during that time period, this new creature isn’t a dinosaur — it’s a dicynodont.
Dicynodonts are a group of ancient four-legged animals that are related to mammals’ ancestors. They’re a diverse group, but the new species is far larger than any other dicynodont found to date. The elephant-sized creature was more than 4.5 meters long and probably weighed about nine tons, the researchers estimate. Related animals didn’t become that big again until the Eocene, 150 million years later. “We think it’s one of the most unexpected fossil discoveries from the Triassic of Europe,” says study coauthor Grzegorz Niedzwiedzki, a paleontologist at Uppsala University in Sweden. “Who would have ever thought that there is a fossil record of such a giant, elephant-sized mammal cousin in this part of the world?” He and his team first described some of the bones in 2008; now they’ve made the new species — Lisowicia bojani — official.
The creature had upright forelimbs like today’s rhinoceroses and hippos, instead of the splayed front limbs seen on other Triassic dicynodonts, which were similar to the forelimbs of present-day lizards. That posture would have helped it support its massive bodyweight.
SAN DIEGO — Labs growing replicas of snakes’ venom glands may one day replace snake farms.
Researchers in the Netherlands have succeeded in growing mimics of venom-producing glands from multiple species of snakes. Stem cell biologist Hans Clevers of the Hubrecht Institute in Utrecht, the Netherlands, reported the creation of these organoids on December 10 at a joint meeting of the American Society for Cell Biology and the European Molecular Biology Organization.
If scientists can extract venom from the lab-grown glands, that venom might be used to create new drugs and antidotes for bites including from snakes that aren’t currently raised on farms.
Up to 2.7 million people worldwide are estimated to be bitten by venomous snakes each year. Between about 81,000 to 138,000 people die as a result of the bite, and as many as roughly 400,000 may lose limbs or have other disabilities, according to the World Health Organization. Antivenoms are made using venom collected from snakes usually raised on farms. Venom is injected into other animals that make antibodies to the toxins. Purified versions of those antibodies can help a bitten person recover, but must be specific to the species of snake that made the bite. “If it’s a fairly rare or local snake, chances are there would be no antidote,” Clevers says.
Three postdoctoral researchers in Clevers’ lab wanted to know if they could make organoids — tissues grown from stem cells to have properties of the organs they mimic — from snakes and other nonmammalian species. The researchers started with Cape coral snakes (Aspidelaps lubricus) that were dissected from eggs just before hatching. Stem cells taken from the unhatched snakes grew into several different types of organoids, including some that make venom closely resembling the snake’s normal venom, Clevers reported at the meeting.
His team has produced venom-gland organoids from at least seven species of snakes. The organoids have survived in the lab for up to two years so far.
Clevers and colleagues hope to harvest venom from the organoids, which produce more highly concentrated venom than snakes usually make. “It’s probably going to be easier than milking a snake,” he says.
WASHINGTON — After a stunningly explosive summer, Kilauea, the world’s longest continuously erupting volcano, finally seems to have taken a break. But the scientists studying it haven’t. Reams of new data collected during an unprecedented opportunity to monitor an ongoing, accessible eruption are changing what’s known about how some volcanoes behave.
“It was hugely significant,” says Jessica Larsen, a petrologist at the University of Alaska Fairbanks, and “a departure from what Kilauea had been doing for more than 35 years.” The latest eruption started in May. By the time it had ended three months later, over 825 million cubic meters of earth had collapsed at the summit. That’s the equivalent of 300,000 Olympic-sized swimming pools, Kyle Anderson, a geophysicist with the U.S. Geologic Survey in Menlo Park, Calif., said December 11 in a news conference at the annual meeting of the American Geophysical Union.
As the summit crater deflated, magma gushed through underground tunnels, draining out through fissures along an area called the lower eastern rift zone at a rate of roughly 50 meters per day. That lava eventually covered 35.5 square kilometers of land, Anderson and his colleagues reported in a study published December 11 in Science.
The volcano also taught scientists a thing or two. Scientists previously believed that groundwater plays a big role in how a caldera collapses. When craters were drained of their magma, “cooling, cracking depressurized the caldera, allowing groundwater to seep in and create a series of explosive eruptions,” Anderson said. “But groundwater did not play a significant role in driving the explosions this summer.”
Instead, the destruction of Kilauea’s crater is what’s called a piston-style caldera collapse, he said. Sixty-two small collapse events rattled the volcano from mid-May to late August, with each collapse causing the crater to sink and pushing the surrounding land out and up. By the end, the center of the volcano sank by as much as 500 meters — more than the height of the Empire State Building.
That activity didn’t just destroy the crater. “We could see surges in the eruption rate 40 kilometers away whenever there was a collapse,” Anderson said. Life finds a way Under the sea, life moved in around the brand-new land surprisingly quickly. Using a remotely operated vehicle to explore the seafloor, researchers in September found evidence of hydrothermal activity along newly deposited lava flows about 650 meters deep. More surprising, bright yellow, potentially iron-oxidizing microbes had already moved in.
“There’s no reason why we should have expected there would be hydrothermal activity that would be alive within the first 100 days,” Chris German, a geologist at Woods Hole Oceanographic Institution in Falmouth, Mass., said at the news conference. “This is actually life here!”
The discovery suggests “how volcanism can give rise to the chemical energy that can drive primitive microbial organisms and flower a whole ecosystem,” he said.
Studying these ecosystems can provide insight into how life may form in places like Enceladus, an icy moon of Saturn. Hydrothermal activity is common where Earth’s tectonic plates meet. But alien worlds don’t show evidence of plate tectonics, though they can be volcanically active, German says. Studying how hydrothermal life forms near volcanoes that aren’t along tectonic boundaries on Earth could reveal a lot about other celestial bodies.
“This is a better analog of what we expect to them to be like,” says German, but “it is what’s least studied.”
What comes next As of December 5, Kilauea had not erupted for three months, suggesting it’s in what’s called a pause – still active but not spewing lava. Observations from previous eruptions suggest that the next phase of Kilauea’s volcanic cycle may be a quieter one. But the volcano likely won’t stay quiet forever, says Christina Neal, the head scientist at the USGS Hawaiian Volcano Observatory and a coauthor of the Science paper. “We’re in this lull and we just don’t know what is going to happen next,” she says.Life finds a way Under the sea, life moved in around the brand-new land surprisingly quickly. Using a remotely operated vehicle to explore the seafloor, researchers in September found evidence of hydrothermal activity along newly deposited lava flows about 650 meters deep. More surprising, bright yellow, potentially iron-oxidizing microbes had already moved in.
“There’s no reason why we should have expected there would be hydrothermal activity that would be alive within the first 100 days,” Chris German, a geologist at Woods Hole Oceanographic Institution in Falmouth, Mass., said at the news conference. “This is actually life here!”
The discovery suggests “how volcanism can give rise to the chemical energy that can drive primitive microbial organisms and flower a whole ecosystem,” he said.
Studying these ecosystems can provide insight into how life may form in places like Enceladus, an icy moon of Saturn. Hydrothermal activity is common where Earth’s tectonic plates meet. But alien worlds don’t show evidence of plate tectonics, though they can be volcanically active, German says. Studying how hydrothermal life forms near volcanoes that aren’t along tectonic boundaries on Earth could reveal a lot about other celestial bodies. Scientists are tracking ground swelling near the Puu Oo vent, where much of Kilauea’s lava has flowed from during the volcano’s 35-year eruption history. That inflation is an indication that magma may still be on the move deep below.
The terrain surrounding this remote region is dense with vegetation, making it a difficult area to study. But new methods tested during the 2018 eruption, such as the use of uncrewed aerial vehicles, for example, could aid in tracking the recent deformation.
Scientists are also watching the volcano next door: Mauna Loa. History has shown that Mauna Loa can act up during periods when Kilauea sleeps. For the past several years, volcanologists have kept an eye on Kilauea’s larger sister volcano, which went silent last fall, after a period with few earthquakes and intermittent deformation. “We’re seeing a little bit of inflation at Mauna Loa and some earthquake swarms where it had been active, Neal says. “So that’s another issue of concern for us going into the future.”
When an outbreak of a viral hemorrhagic fever hit Nigeria in 2018, scientists were ready: They were already in the country testing new disease-tracking technology, and within weeks managed to steer health workers toward the most appropriate response.
Lassa fever, which is transmitted from rodents to humans, pops up every year in West Africa. But 2018 was the worst season on record for Nigeria. By mid-March, there were 376 confirmed cases — more than three times as many as by that point in 2017 — and another 1,495 suspected. Health officials weren’t sure if the bad year was being caused by the strains that usually circulate, or by a new strain that might be more transmissible between humans and warrant a stronger response. New technology for analyzing DNA in the field helped answer that question mid-outbreak, confirming the outbreak was being caused by pretty much the same strains transmitted from rodents to humans in past years. That rapid finding helped Nigeria shape its response, allowing health officials to focus efforts on rodent control and safe food storage, rather than sinking time and money into measures aimed at stopping unlikely human-to-human transmission, researchers report in the Jan. 4 Science.
While the scientists were reporting their results to the Nigeria Centre for Disease Control, they were also discussing the data with other virologists and epidemiologists in online forums. This kind of real-time collaboration can help scientists and public health workers “see the bigger picture about pathogen spread,” says Nicholas Loman, a microbial genomicist at the University of Birmingham in England who was not involved in the research.
Portable DNA sequencers, some as small as a cell phone, have allowed scientists to read the genetic information of viruses emerging in places without extensive lab infrastructure. Looking for genetic differences between patient samples can give clues to how a virus is being transmitted and how quickly it’s changing over time — key information for getting outbreaks under control. If viral DNA from several patients is very similar, that suggests the virus may be transmitted between people; if the DNA is more distinct, people might be picking up the virus independently from other animals.
The technology has also been used amid recent Ebola and Zika outbreaks. But the Lassa virus presents a unique challenge, says study coauthor Stephan Günther, a virologist at the Bernhard-Nocht-Institute for Tropical Medicine in Hamburg, Germany. Unlike Ebola or Zika, Lassa has a lot of genetic variation between strains. So while the same small regions of DNA from various strains of Ebola or Zika can be identified for analysis, it’s hard to accurately target similar regions for comparison among Lassa strains. Instead, Günther and his team used a tactic called metagenomics: They collected breast milk, plasma and cerebrospinal fluid from patients and sequenced all the DNA within — human, viral and anything else lurking. Then, the team picked out the Lassa virus DNA from that dataset.
All told, the scientists analyzed Lassa virus DNA from 120 patients, far more than initially intended. “We went to the field to do a pilot study,” Günther says. “Then the outbreak came. And we quickly scaled up.” Preexisting relationships in Nigeria helped make that happen: The team had been collaborating for a decade with researchers at the Irrua Specialist Teaching Hospital and working alongside the World Health Organization and the Nigeria Centre for Disease Control.
Analyzing and interpreting the massive amounts of data generated by the metagenomics approach was a challenge, especially with limited internet connection, Günther says. Researchers analyzed 36 samples during the outbreak — less than a third of their total dataset, but still enough to guide the response. The full analysis, completed after the outbreak, confirmed the initial findings.
A metagenomics approach could be useful in disease surveillance more broadly. Currently, “we look for things that we know about and expect to find. Yet evidence from Ebola in West Africa and Zika in the Americas is that emerging pathogens can pop up in unexpected places, and take too long to be recognized,” Loman says. Sequencing all DNA in a sample, he says, could allow scientists to detect problem pathogens before they cause outbreaks.Instead, Günther and his team used a tactic called metagenomics: They collected breast milk, plasma and cerebrospinal fluid from patients and sequenced all the DNA within — human, viral and anything else lurking. Then, the team picked out the Lassa virus DNA from that dataset.
All told, the scientists analyzed Lassa virus DNA from 120 patients, far more than initially intended. “We went to the field to do a pilot study,” Günther says. “Then the outbreak came. And we quickly scaled up.” Preexisting relationships in Nigeria helped make that happen: The team had been collaborating for a decade with researchers at the Irrua Specialist Teaching Hospital and working alongside the World Health Organization and the Nigeria Centre for Disease Control.
Analyzing and interpreting the massive amounts of data generated by the metagenomics approach was a challenge, especially with limited internet connection, Günther says. Researchers analyzed 36 samples during the outbreak — less than a third of their total dataset, but still enough to guide the response. The full analysis, completed after the outbreak, confirmed the initial findings.
A metagenomics approach could be useful in disease surveillance more broadly. Currently, “we look for things that we know about and expect to find. Yet evidence from Ebola in West Africa and Zika in the Americas is that emerging pathogens can pop up in unexpected places, and take too long to be recognized,” Loman says. Sequencing all DNA in a sample, he says, could allow scientists to detect problem pathogens before they cause outbreaks.